A Proofs of the theorems

We first state a few helper lemmas.

Lemma 1. Suppose the graph G is an (l, r)-regular graph, i.e. worker degree is l and task degree is r. Then, for each $(w_i, t_j) \in G$, the following is true

$$\Pr(w_i(t_j) = 1) = \frac{1 + (2\gamma - 1)\mu}{2},$$

$$\Pr(w_i(t_j) = -1) = \frac{1 - (2\gamma - 1)\mu}{2},$$

and

$$\mathbb{E}[d_j^+] = r \frac{1 + (2\gamma - 1)\mu}{2}, \quad \mathbb{E}[d_j^-] = r \frac{1 - (2\gamma - 1)\mu}{2},$$

where the probability and expectation are taken over the random process of sampling worker reliabilities, task true labels, and the labels provided by the workers.

Proof. The proof of this result is rather simple. We have,

$$\Pr(w_i(t_j) = 1 | \mu_i) = \Pr(w_i(t_j) = 1 | y_j = 1, \mu_i) \Pr(y_j = 1 | \mu_i)$$

$$+ \Pr(w_i(t_j) = 1 | y_j = -1, \mu_i) \Pr(y_j = -1 | \mu_i)$$

$$= \gamma \mu_i + (1 - \mu_i)(1 - \gamma)$$

$$= \gamma \frac{1 + \mu_i}{2} + (1 - \gamma) \frac{1 - \mu_i}{2}$$

$$= 1/2 + (2\gamma - 1)\mu_i/2.$$

The expression for $\Pr(w_i(t_j) = -1)$ now immediately follows from the fact that

$$\Pr(w_i(t_j) = -1) = 1 - \Pr(w_i(t_j) = 1)$$

Hence, we can write

$$\Pr(w_i(t_j) = 1) = \int \Pr(w_i(t_j) = 1 | \mu_i) f(\mu_i) d\mu_i$$

$$= \frac{1}{2} + \frac{2\gamma - 1}{2} \int \mu_i f(\mu_i) d\mu_i$$

$$= 1/2 + (2\gamma - 1)\mu/2,$$

where μ is the average reliability in the population. In a similar fashion we can write

$$\mathbb{E}[d_j^+] = \sum_{i \in W_j} \Pr(w_i(t_j) = 1)$$

$$= |W_j| \frac{1 + (2\gamma - 1)\mu}{2} = r \frac{1 + (2\gamma - 1)\mu}{2},$$

where W_j denotes the set of workers labeling task t_j and the second equality follows from the expression for $\Pr(w_i(t_j) = 1)$ above. We have used the fact that $|W_j| = r$ because the assignment graph G is (l, r)-regular.

The expression for $\mathbb{E}[d_j^-]$ immediately follows from the fact that $d_j^+ + d_j^- = |W_j| = r$ for any task t_j. The result of the lemma now follows. □
Lemma 2. For a given realization of the worker reliabilities and task true labels, we have the following:

\[
\mathbb{E}[d_j^+ | y_j = 1] = \frac{r}{2} + \frac{1}{2} \sum_{i' \in W_j} \mu_{i'}
\]

\[
\mathbb{E}[d_j^+ | y_j = -1] = \frac{r}{2} - \frac{1}{2} \sum_{i' \in W_j} \mu_{i'},
\]

where the expectation is over the randomness in label generation. Furthermore, we must have

\[
\mathbb{E}[d_j^+ | y_j = 1, w_i(t_j) = 1] = \frac{1 - \mu_i}{2} + \frac{r}{2} + \frac{1}{2} \sum_{i' \in W_j} \mu_{i'}
\]

\[
\mathbb{E}[d_j^+ | y_j = -1, w_i(t_j) = 1] = \frac{1 + \mu_i}{2} + \frac{r}{2} - \frac{1}{2} \sum_{i' \in W_j} \mu_{i'},
\]

Proof. We proceed as follows.

\[
\mathbb{E}[d_j^+ | y_j = 1] = \sum_{i' \in W_j} \mathbb{P}(w_{i'}(t_j) = 1 | y_j = 1) = \sum_{i' \in W_j} p_{i'} = \sum_{i' \in W_j} \frac{1 + \mu_{i'}}{2}
\]

\[
= \frac{|W_j|}{2} + \frac{1}{2} \sum_{i' \in W_j} \mu_{i'}
\]

\[
= \frac{r}{2} + \frac{1}{2} \sum_{i' \in W_j} \mu_{i'}.
\]

It can be shown in a similar fashion that \(\mathbb{E}[d_j^+ | y_j = -1] = r/2 - (\sum_{i' \in W_j} \mu_{i'})/2\).

Coming to the next set of equalities, we have

\[
\mathbb{E}[d_j^+ | y_j = 1, w_i(t_j) = 1] = 1 + \sum_{i' \in W_j, i' \neq i} \mathbb{E}[1[w_{i'}(t_j) = 1] | w_i(t_j) = 1, y_j = 1]
\]

\[
= 1 + \sum_{i' \in W_j, i' \neq i} \mathbb{E}[1[w_{i'}(t_j) = 1] | y_j = 1]
\]

\[
= 1 + \sum_{i' \in W_j, i' \neq i} \mathbb{P}(w_{i'}(t_j) = 1 | y_j = 1)
\]

\[
= 1 + \sum_{i' \in W_j, i' \neq i} p_{i'}
\]

\[
= 1 - p_i + \sum_{i' \in W_j} p_{i'}
\]

\[
= \frac{1 - \mu_i}{2} + \sum_{i' \in W_j} p_{i'},
\]

where the second inequality follows from the conditional independence of \(1[w_i(t_j) = 1]\) and \(1[w_{i'}(t_j) = 1]\) given \(t_j\) for \(i \neq i'\). The desired expression is then obtained by noting that \(\sum_{i' \in W_j} p_{i'} = \mathbb{E}[d_j^+ | y_j = 1]\). The derivation of the expression of \(\mathbb{E}[d_j^+ | y_j = -1, w_i(t_j) = 1]\) follows from a symmetric argument. The result of the lemma now follows.

A.1 Proof of Theorem 1

For a given realization of worker reliabilities, task true labels, and worker labels to tasks, let \(s_{ij}\) denote the penalty assigned by task \(t_j\) to worker \(w_i\). It follows from our algorithm that

\[
1/s_{ij} = d_j^+ 1[w_i(t_j) = 1] + d_j^- 1[w_i(t_j) = -1]
\]

\[
= (d_j^+ - d_j^-) 1[w_i(t_j) = 1] + d_j^-
\]

\[
= (2d_j^+ - r) 1[w_i(t_j) = 1] + r - d_j^+
\]
We now consider the case that \(y_j = 1 \). Now note that
\[
E[1[w_i(t_j) = 1 | y_j = 1] = \sum_{i' \in W_j} E[1[w_i(t_j) = 1 | y_j = 1] \cdot 1[w_{i'}(t_j) = 1 | y_j = 1]
\]

where we have used the fact that the random variables \(1[w_i(t_j) = 1] \) and \(1[w_{i'}(t_j) = 1] \) for \(i \neq i' \) are conditionally independent given \(y_j \). It then follows that (using lemmas 1 and 2 above)
\[
E[1/s_{ij} | y_j = 1] = (2E[d^+_j | y_j = 1, w_i(t_j) = 1] - r) \Pr(w_i(t_j) = 1 | y_j = 1) + r - E[d^+_j | y_j = 1] = \left(1 - \mu_i + r + \sum_{i' \in W_j} \mu_{i'} - r\right) (1 + \mu_i)/2 + r/2 - 0.5 \sum_{i' \in W_j} \mu_{i'}.
\]

The above expression can be simplified to get
\[
E[1/s_{ij} | y_j = 1] = r/2 + (1 - \mu_i^2)/2 + 0.5r\mu_i \sum_{i' \in W_j} \mu_{i'}/|W_j|.
\]

We now make a few approximations based on the concentration of the sum of independent random variables around its mean. In particular, since \(|W_j| = r \to \infty \), it follows (from say Chernoff bound) that
\[
\sum_{i' \in W_j} \mu_{i'}/|W_j| \approx E[\mu_i] = \mu,
\]

where we use the notation \(X \approx y \) to denote that the random variable \(X \) concentrates around quantity \(y \). We thus have that
\[
E[1/s_{ij} | y_j = 1] \approx r/2 + (1 - \mu_i^2)/2 + 0.5r\mu_i \mu.
\]

In a similar fashion, in the case when \(y_j = -1 \), we can write (using lemmas 1 and 2)
\[
E[1/s_{ij} | y_j = -1] = (2E[d^+_j | y_j = -1, w_i(t_j) = 1] - r) \Pr(w_i(t_j) = 1 | y_j = -1) + r - E[d^+_j | y_j = -1] = \left(1 + \mu_i + r - \sum_{i' \in W_j} \mu_{i'} - r\right) (1 - \mu_i)/2 + r/2 + 0.5 \sum_{i' \in W_j} \mu_{i'}
\]

\[= r/2 + (1 - \mu_i^2)/2 + 0.5r\mu_i \sum_{i' \in W_j} \mu_{i'}/|W_j|.
\]

As a result, given some assignment of true labels for the tasks and using the concentration approximation (as \(r \to \infty \)) \(s_{ij} \approx 1/E[1/s_{ij} | y_j = 1] \) when \(y_j = 1 \) and \(s_{ij} \approx 1/E[1/s_{ij} | y_j = -1] \) when \(y_j = -1 \), we have
\[
\frac{1}{|T_i|} \sum_{j \in T_i} s_{ij} \approx \frac{1}{|T_i|} \sum_{j \in T_i} \frac{1}{r/2 + (1 - \mu_i^2)/2 + 0.5r\mu_i \mu} = \frac{1}{r/2 + (1 - \mu_i^2)/2 + 0.5r\mu_i \mu},
\]

where \(T_i \) denotes the set of tasks that worker \(w_i \) was assigned. Thus the penalty received by worker \(w_i \) concentrates around \(1/\mu_i \), where the function \(g(\cdot) \) is defined as \(g(x) = r/2 + (1 - x^2)/2 + 0.5rx \mu \). Note that \(g'(x) = -x + 0.5r \mu \). Thus, for \(r \) large enough and \(\mu > 0 \), we must have that \(g'(x) > 0 \) for any \(x \in [-1, 1] \). Thus, the function \(g(\cdot) \) is increasing on the domain \([-1, 1] \), from which we can conclude that the penalty decreases with the increase in the reliability of the worker. The result of the theorem now follows.
A.2 Proof of Theorem 2

The proof is similar to that of theorem 1 above. First, we need to compute $\mathbb{E}[d_j^+ | y_j = 1]$ for any task t_j. In particular, we can write

$$d_j^+ = \sum_{a \in A_j} 1[a(t_j) = 1] + \sum_{i \in H_j} 1[w_i(t_j) = 1]$$

$$= |A_j| + \sum_{i \in H_j} 1[w_i(t_j) = 1].$$

where H_j and A_j denotes the set of honest workers and adversaries who label task t_j. We now note that $\mathbb{E}[|A_j|] = (1 - q)r$ and $\mathbb{E}[|H_j|] = qr$, and following the sequence of arguments in lemmas 1 and 2 we can write

$$\mathbb{E}[d_j^+ | y_j = 1] \approx (1 - q)r + \frac{rq}{2}(1 + \mu).$$

In a similar fashion, we can show that

$$\mathbb{E}[d_j^+ | y_j = -1] \approx (1 - q)r + \frac{rq}{2}(1 - \mu).$$

Similarly, for any honest worker h_i we can write

$$\mathbb{E}[d_j^+ | y_j = 1, w_i(t_j) = 1] \approx (1 - q)r + \frac{1 - \mu_i}{2} + \frac{rq}{2}(1 + \mu)$$

and

$$\mathbb{E}[d_j^+ | y_j = -1, w_i(t_j) = 1] \approx (1 - q)r + \frac{1 + \mu_i}{2} + \frac{rq}{2}(1 - \mu).$$

Note that $\mathbb{E}[d_j^+ | y_j = 1]$ and $\mathbb{E}[d_j^+ | y_j = -1]$ are respectively $\mathbb{E}[1/s_{aj} | y_j = 1]$ and $\mathbb{E}[1/s_{aj} | y_j = -1]$ for any adversary a labeling on task t_j. We can now compute the penalty assigned by task t_j to honest worker h_i. Following the sequence of steps above, we can write

$$\mathbb{E}[1/s_{ij} | y_j = 1] \approx \left(2(1 - q)r + 1 - \mu_i + rq + rq\mu - r\right)\left(1 + \mu_i\right)/2 + r - (1 - q)r - rq/2 - rq\mu/2$$

$$= (1 - q)r(1 + \mu_i)/2 + (1 - \mu_i^2)/2 + rq/2 + rq\mu_i/2$$

$$= (1 - \mu_i^2)/2 + r/2 + rq\mu_i(q\mu + 1 - q)/2.$$

In a similar fashion, we can show that

$$\mathbb{E}[1/s_{ij} | y_j = -1] \approx \left(2(1 - q)r + 1 + \mu_i + rq - rq\mu - r\right)(1 - \mu_i)/2 + r - (1 - q)r - rq/2 + rq\mu/2$$

$$= (1 - q)r(1 - \mu_i)/2 + (1 - \mu_i^2)/2 + rq/2 + rq\mu_i/2$$

$$= (1 - \mu_i^2)/2 + r/2 + rq\mu_i(q\mu - 1 + q)/2.$$

We thus have that the total penalty received by an honest worker is given by

$$\frac{1}{|T_i|} \sum_{t_j \in T_i} s_{ij} \approx \frac{\gamma}{(1 - \mu_i^2)/2 + r/2 + rq\mu_i(q\mu + 1 - q)/2} + \frac{(1 - \gamma)}{(1 - \mu_i^2)/2 + r/2 + rq\mu_i(q\mu - 1 + q)/2}$$

Similarly, the total penalty received by an adversary is given by

$$\frac{1}{|T_a|} \sum_{t_j \in T_a} s_{aj} \approx \frac{\gamma}{(1 - q)r + rq(1 + \mu)/2} + \frac{(1 - \gamma)}{(1 - q)r + rq(1 - \mu)/2}.$$

Now consider the special case in which $\gamma = 1/2$ and $\mu_i = 1$, where we get

$$\frac{1}{|T_i|} \sum_{t_j \in T_i} s_{ij} \approx \frac{1/(2r)}{1 - q/2 + q\mu/2} + \frac{1/(2r)}{q/2 + q\mu/2}$$
and
\[\frac{1}{|T_a|} \sum_{t_j \in T_a} s_{aj} \approx \frac{1/(2r)}{1-q/2 + q\mu/2} + \frac{1/(2r)}{1-q/2 - q\mu/2}. \]

In this special case it is easy to see that the penalty assigned to the adversaries is higher than the penalty assigned to the honest workers if and only if
\[q/2 + q\mu/2 > 1 - q/2 - q\mu/2 \iff q + q\mu > 1 \iff q > 1/(1 + \mu). \]

Now consider the more general setting. We write
\[\frac{1}{|T_i|} \sum_{t_j \in T_i} s_{ij} \approx \frac{2\gamma/r}{(1 - \mu_i^2)/r + 1 + \mu_i(q\mu + 1 - q)} + \frac{2(1 - \gamma)/r}{(1 - \mu_i^2)/r + 1 + \mu_i(q\mu - 1 + q)} \]
\[\leq \frac{2\gamma/r}{1 + \mu_i(q\mu + 1 - q)} + \frac{2(1 - \gamma)/r}{1 + \mu_i(q\mu - 1 + q)}. \]

Similarly,
\[\frac{1}{|T_a|} \sum_{t_j \in T_a} s_{aj} = \frac{2\gamma/r}{2 - q + q\mu} + \frac{2(1 - \gamma)/r}{2 - q - q\mu}. \]

More generally, the penalty of the honest worker is less than that of the adversary only if the reliability of the honest worker is “high enough”. To simplify the expressions, we assume that \(\gamma = \frac{1}{2} \):
\[\frac{1/2}{1 + \mu_i(q\mu + 1 - q)} + \frac{1/2}{1 + \mu_i(q\mu - 1 + q)} \leq \frac{1/2}{2 - q + q\mu} + \frac{1/2}{2 - q - q\mu} \]
\[\iff \frac{1 + \mu_i(q\mu)}{2 - q} \leq \frac{(1 - q^2) + (1 + \mu_i^2) - (1 + \mu_i(q\mu))^2}{(1 - q^2) + (1 + \mu_i^2) - (1 - q^2) + (1 + \mu_i^2) - (1 + q^2) - 2q\mu_i} \]
\[\iff \mu_i \geq \frac{(2 - q)(1 - q - q^2 + 2\mu_i)}{(2 - q)q + q^2\mu_i}. \]

It is easy to see that the RHS expression is always less than or equal to 1. Thus, depending on the choice of the parameters, some low reliable honest workers will receive higher penalty than the adversaries.

A.3 Proof of Theorem 3

We prove the result for the the case when there exists at least one subset \(T' \subseteq T \) such that \(\text{PreIm}(T') \leq k \). Otherwise, the lower bound \(L = 0 \) by definition and the result of the theorem is trivially true.

Let \(H^* \) denote the set \(\text{PreIm}(T^*) \) where
\[T^* \text{ def } \arg \max_{T' \subseteq T : |\text{PreIm}(T')| \leq k} |T'|. \]

For a given decision rule \(R \in C \), we now construct an adversary strategy \(\sigma^* \) under which at least \(L \) tasks are affected for some ground-truth labeling. Specifically for a fixed honest worker labeling pattern and ground-truth labeling \(y \) of the tasks, consider the following adversary strategy: let \(H^* = \{h_1, h_2, \ldots, h_{|H^*|}\} \) and the set of adversaries \(A = \{a_1, a_2, \ldots, a_k\} \), we have (recall the notation in Section 2)
\[a_i(t) = \begin{cases} -h_i(t), & \text{if } t \in T^* \\ h_i(t), & \text{otherwise} \end{cases} \quad \forall i = 1, 2, \ldots, |H^*|. \]

In other words, the adversaries label opposite to the honest workers in \(H^* \) for tasks in \(T^* \) and agree with them for all other tasks. Note that since \(|H^*| \leq k \) by construction, the above strategy is
feasible. In addition, if $|H^*| < k$, then we only use $|H^*|$ of the k adversary identities and not use the remaining.

Now consider the scenario in which the true labels of all tasks in T^* are reversed, let this ground-truth be denoted by \hat{y}. This would alter the labels of the honest workers (since we assumed they always label correctly). In particular, let $h(t)$ denote the label of an honest worker in this scenario. Then, we have that for any honest worker
\[
\hat{h}(t) = h(t), \forall t \not\in T^* \quad \text{and} \quad \hat{h}(t) = -h(t), \forall t \in T^*, \forall h \in H. \quad (1)
\]
Correspondingly, according to the adversary labeling strategy σ^* above, the adversary labels would also change. In particular, using $\tilde{a}(t)$ to denote the adversary label in this scenario, we have
\[
\tilde{a}(t) = a(t), \forall t \not\in T^* \quad \text{and} \quad \tilde{a}(t) = -a(t), \forall t \in T^*, \forall a \in A. \quad (2)
\]
Finally, let $\hat{\mathcal{L}}$ denote the labeling matrix corresponding to this new scenario. We now argue that $\hat{\mathcal{L}} = P\mathcal{L}$ for some $n \times n$ permutation matrix P. In order to see this consider, for any worker w (honest or adversary), let $r(w)$ and $\hat{r}(w)$ respectively denote the row vectors in matrices \mathcal{L} and $\hat{\mathcal{L}}$. We show that $\hat{\mathcal{L}}$ can be obtained from \mathcal{L} through a permutation of the rows. For that, first note that for any honest worker $h \not\in H^*$, we must have by definition of PreIm that $h(t) = 0$ for any $t \in T^*$. Thus, it follows from (1) that $\hat{h}(t) = -h(t) = 0 = h(t)$ for any $t \in T^*$. Furthermore, $h(i) = \hat{h}(i)$ for any $i \not\in T^*$ by (1). Therefore, we have that $r(h) = \hat{r}(h)$ for any $h \not\in H^*$. Now consider an honest worker $h_i \in H^*$ for some i. We now argue that $r(h_i) = \hat{r}(h_i)$. To see this, for any task $t \not\in T^*$, we have by (2) that $\hat{a}_i(t) = a_i(t) = h_i(t)$, where the second equality follows from our definition of the adversary strategy. Similarly, for any $t \in T^*$, we have $\hat{a}_i(t) = -a_i(t)$ by (2) and $a_i(t) = -h_i(t)$ (by the adversary strategy). Hence, we must have $\hat{a}_i(t) = h_i(t)$ for any $t \in T^*$. Thus, we have shown that the rows $\hat{r}(a_i) = r(h_i)$ for any i. Thus, $\hat{\mathcal{L}}$ is obtained from \mathcal{L} by swapping rows corresponding to h_i with a_i for all i.

Now that we have shown that $\hat{\mathcal{L}} = P\mathcal{L}$ for some permutation matrix P, it follows from the fact that $R \in \mathcal{L}$ that $R(\hat{\mathcal{L}}) = R(\mathcal{L})$. Thus, the label assigned by R to all tasks in T^* is the same under both scenarios. As a result, it follows that $\text{Aff}(R, \sigma^*, \mathcal{I}) + \text{Aff}(R, \sigma^*, \hat{\mathcal{Y}}) = |T^*| = 2 \ast L$ and therefore, either $\text{Aff}(R, \sigma^*, \mathcal{Y}) \geq L$ or $\text{Aff}(R, \sigma^*, \hat{\mathcal{Y}}) \geq L$. The result of the theorem now follows.

Also, note that the simple majority decision rule, with labels chosen randomly in case of a tie, achieves this lower bound.

A.4 Proof of Theorem 4

Before we can prove the theorem, we need the following definitions and lemmas.

Definition 2. A bipartite graph $B = (U, V, E)$ is termed **degenerate** if the following condition is satisfied:

$$|U| > |V|$$

Definition 3. A bipartite graph $B = (U, V, E)$ is termed **growth** if the following condition is satisfied:

$$\forall U' \subseteq U \ |U'| \leq |\text{Img}(U')|$$

Lemma 3. Any bipartite graph can be decomposed into degenerate and growth sub-graphs where there are cross-edges only from the growth component to the degenerate component.

Proof. Let $B = (U, V, E)$ be a given bipartite graph. Define U^* to be the largest subset of U such that $|U^*| > |\text{Img}_B(U^*)|$ where Img_B denotes the image in the graph B. If no such U^* exists then the graph is already growth and we are done. Else, we claim that the sub-graph (say C) of B restricted to $U \setminus U^*$ on the left and $V \setminus \text{Img}_B(U^*)$ on the right is growth. Otherwise,
there exists a subset U' such that $|U'| > |\text{Img}_C(U')|$ where $\text{Img}_G(U') \subseteq V \setminus \text{Img}_B(U^*)$ denotes the image of U' in the sub-graph C. But then, we can add U' to U^* to get a larger degenerate sub-graph in B which contradicts our choice of U^*. To see this, consider the set $U^* \setminus U'$ on the left and $\text{Img}_B(U^*) \cup \text{Img}_C(U')$ on the right. We have $|U^* \cup U'| = |U^*| + |U'| > |\text{Img}_B(U^*)| + |\text{Img}_G(U')| = |\text{Img}_B(U^* \cup U')|$. Also, note that the only cross-edges are from $U^* \setminus U'$ to $\text{Img}_B(U^*)$. This shows that any bipartite graph can be decomposed into degenerate and growth sub-graphs with cross-edges only from the growth to the degenerate sub-graph.

\[\square \]

Lemma 4. Let $B = (U,V,E)$ be any bipartite graph and suppose that M is any semi-matching on B. Further, let $C = (U,V_1 \subseteq V,E_1)$ be any subgraph of B. Starting with $M_1 \subseteq M$, we can use algorithm A_{SM2} in [OPT] to obtain an optimal semi-matching N on C. Let the nodes in U be indexed such that $\text{deg}_M(1) \geq \text{deg}_M(2) \geq \ldots \geq \text{deg}_M(|U|)$ and indexed again such that $\text{deg}_N(1) \geq \text{deg}_N(2) \geq \ldots \geq \text{deg}_N(|U|)$. Then for any $1 \leq l \leq |U|$, $\sum_{i=1}^{l} \text{deg}_N(i) \leq \sum_{i=1}^{l} \text{deg}_M(i)$, i.e. the sum of the degrees of the top l nodes in U only decreases as we go from M to N.

\[\text{Proof.} \] Note that if we restrict M to just the nodes V_1, we get a feasible semi-matching M_1 on C. Algorithm A_{SM2} proceeds by the iterated removal of cost-reducing paths. Note that when a cost-reducing path is removed, load is transferred from a worker with larger degree to a worker with strictly smaller degree. To see this, let $P = (u_1,v_1,u_2,v_2,...,u_k)$ be a cost-reducing path. This means that $\text{deg}(u_1) > \text{deg}(u_k) + 1$. When we eliminate the cost-reducing path P, the degree of u_1 decreases by 1 and that of u_k increases by 1, but still the new degree of u_k is strictly lower than the old degree of u_1. In other words, if $d_{u_1} \geq d_{u_2} \geq \ldots \geq d_{u_k}$ be the degrees of the nodes in U before and after the removal of a cost-reducing path, then $\sum_{i=1}^{l} d_{u_i}^A \leq \sum_{i=1}^{l} d_{u_i}^B$ for any $1 \leq l \leq |U|$. Since this invariant is satisfied after every iteration of algorithm A_{SM2}, it holds at the beginning and the end and we have

$$\sum_{i=1}^{l} \text{deg}_N(i) \leq \sum_{i=1}^{l} \text{deg}_M(i)$$

(3)

However, note that when we restrict M to only the set V_1, the sum of the degrees of the top l nodes in U can only decrease, i.e.

$$\sum_{i=1}^{l} \text{deg}_M(i) \leq \sum_{i=1}^{l} \text{deg}_M(i)$$

(4)

Combining equations 3 and 4, the result follows.

\[\square \]

Notation. First, let T^+ denote the set $\{t^+ : t \in T\}$, and similarly T^- denote the set $\{t^- : t \in T\}$. Now partition the set of task copies $T^+ \cup T^-$ into $E \cup F$ such that for any task t, if the true label is 1, we put t^+ in E and t^- in F, otherwise, we put t^+ in E and t^- in F. Thus, E contains task copies with true labels while F contains task copies with incorrect labels. Since honest workers always provide the true label, all honest workers have edges only to the set of task copies in E. However, adversaries can have edges to task copies in E and F. In addition, it is easy to see that the bipartite graph on the honest workers H and task copies in E is the same as B_H. As a result, the optimal semi-matching M_E over the sub-graph from H to E is the same as the optimal semi-matching over the bipartite graph B_H, which we denote by M_H. Thus, the degrees of the honest workers in M_E are by hypothesis of the theorem $d_1,d_2,\ldots,d_{|H|}$. Without loss of generality, suppose that honest workers are indexed such that $d_1 \geq d_2 \geq \cdots \geq d_{|H|}$. And d_h denote the degree of honest worker h.

Adversary strategy that affects at least $\sum_{i=1}^{k-1} d_i$ tasks

We now exhibit an adversary strategy that results in incorrect labels for at least $\sum_{i=1}^{k-1} d_i$ tasks. For a given honest worker labeling pattern, the adversaries target workers $\{1,2,\ldots,k-1\}$ in H: for each honest worker h, the adversary labels opposite to h on every task that h is mapped to in the semi-matching M_E. Furthermore, the adversary uses the last identity k to label opposite the true label for every task in T for which one of the first $k-1$ adversaries have not already labeled on. We now argue that under the penalty-based aggregation algorithm, this adversary strategy results in incorrect labels for at least $\sum_{i=1}^{k-1} d_i$ tasks. To see this, first note that the conflict set T_{cs} is the entire set of
tasks T. The bipartite graph B^{cs} decomposes into two disjoint bipartite graphs: bipartite graph B_E from H to E and semi-matching M_F from A to F that represents the adversary labeling pattern (it is a semi-matching because there is exactly one adversary labeling on each task). Since the bipartite graph B^{cs} decomposes into two disjoint bipartite graphs, computing the optimal semi-matching on B^{cs} is equivalent to separately computing optimal semi-matchings on B_E and M_F. Since M_E is the optimal semi-matching on B_E and M_F is already a semi-matching by construction, the optimal semi-matching of B^{cs} is the disjoint union of M_E and M_F. It is easy to see that in the resultant semi-matching honest worker i and adversary i have the same degrees for $i = 1, 2, \ldots, k - 1$. Hence, for every task that is labeled by honest worker i for $i = 1, 2, \ldots, k - 1$, the algorithm outputs label 0. Thus, this adversary strategy results in incorrect labels for at least $\sum_{i=1}^{k-1} d_i$ tasks.

Upper bound U

We assume in the arguments below that the optimal semi-matching in HARD PENALTY Algorithm is computed on the entire task set and not just the conflict set T_{cs} (We drop the cs superscript and refer to this graph as just B below, note that B contains both real and fake copies of the tasks). However, the bounds provided still hold as a result of lemma 4 above. Also, we assume that the adversary labeling strategy is always a semi-matching, i.e. there is at most one adversary label for any task. If the adversary labeling strategy is not a semi-matching, they can replace it with an alternate strategy where they only label for tasks to which they will be mapped in the optimal semi-matching (the adversaries can compute this since they have knowledge of the honest workers’ labels). The optimal semi-matching doesn’t change (otherwise it contradicts the optimality of the original semi-matching) and hence neither does the number of affected tasks.

We first state the following important lemma:

Lemma 5. For any adversary labeling strategy, let $B(E)$ denote the bipartite graph B restricted to all the workers W on the left and “real tasks” E on the right, and M be the optimal semi-matching on the bipartite graph B. Further, let $M(E) \subseteq M$ be the optimal semi-matching restricted just to the task set E. Then, $M(E)$ is an optimal semi-matching for the sub-graph $B(E)$.

Proof. Suppose the statement is not true and let $N(E)$ denote the optimal semi-matching on $B(E)$. We use $d_a(K)$ to denote the degree of worker w in a semi-matching K. Note that, $d_a(N(E)) \leq d_a(M)$ for all adversaries $a \in A$. For the adversaries who did not agree with any honest worker, they will have degrees 0 in the semi-matchings $N(E)$ and $M(E)$ but the inequality is still satisfied. Now, since $N(E)$ is an optimal semi-matching and $M(E)$ is not, we have that

$$cost(N(E)) < cost(M(E)) \Rightarrow \sum_{h \in H} d_h(N(E))^2 + \sum_{a \in A} d_a(N(E))^2 < \sum_{h \in H} d_h(M(E))^2 + \sum_{a \in A} d_a(M(E))^2 \tag{5}$$

Now, consider the semi-matching N on B where we start with the semi-matching $N(E)$ and then map the adversaries A to the tasks in F to which they were assigned in the original optimal semi-matching M. Now, we claim that $cost(N) < cost(M)$ which will be a contradiction since M was assumed to be an optimal semi-matching on B.

$$cost(M) - cost(N)$$

$$= \sum_{h \in H} d_h(M)^2 + \sum_{a \in A} d_a(M)^2 - (\sum_{h \in H} d_h(N)^2 + \sum_{a \in A} d_a(N)^2)$$

$$= \sum_{h \in H} d_h(M(E))^2 + \sum_{a \in A} (d_a(M(E)) + \Delta_a)^2$$

$$- (\sum_{h \in H} d_h(N(E))^2 + \sum_{a \in A} (d_a(N(E)) + \Delta_a)^2)$$

where $\Delta_a \triangleq d_a(M) - d_a(M(E)) \geq 0$

$$= (\sum_{h \in H} d_h(M(E))^2 + \sum_{a \in A} d_a(M(E))^2) - \sum_{h \in H} d_h(N(E))^2 - \sum_{a \in A} d_a(N(E))^2$$

$$+ 2 \sum_{a \in A} (d_a(M(E)) - d_a(N(E))) \Delta_a > 0$$

since $d_a(M(E)) \geq d_a(N(E))$ as stated above \(\tag{6}\)

Therefore, $M(E)$ is an optimal semi-matching for the sub-graph $B(E)$. \qed
Part 1. Adversaries only provide incorrect labels or at most 1 adversary provides correct labels

First, we provide an upper bound on the number of affected tasks when the adversaries only disagree with the honest workers.

Lemma 6. Suppose that the adversaries never agree with the honest workers. Let M be an arbitrary semi-matching on the bipartite graph B and suppose that this semi-matching is used in the penalty-based aggregation Algorithm to compute the true labels of the tasks. Further, let $b_1 \geq b_2 \geq \cdots \geq b_{|H|}$ denote the degrees of the honest workers in this semi-matching where b_i is the degree of honest worker h_i. Then, the number of affected tasks is at most $\sum_{i=1}^{k} b_i$.

Proof. It follows from the assumption that adversaries never agree with the honest workers that there are no cross-edges between A and E in the bipartite graph B. Thus, for any adversary labeling pattern, we can decompose the bipartite graph B into B_E and B_F, where B_E is the bipartite graph from the adversaries A to the task copies in F. This further means that the semi-matching M is a disjoint union of semi-matchings on B_E and B_F. Let the semi-matchings on the sub-graphs be termed as $M(E)$ and $M(F)$ respectively. Further, let $T \subseteq T$ denote the set of tasks that are affected (receive incorrect labels) under this strategy of the adversaries and when the semi-matching M is used to compute the reputations of the workers. We claim that $|T| \leq \sum_{i=1}^{k} b_i$. To see this, for each adversary $a \in A$, let $H(a) \subseteq H$ denote the set of honest workers who have “lost” to a i.e., for each worker $h \in H(a)$ there exists a task $t \in T$ such that h is mapped to t in $M(E)$, a is mapped to t in $M(F)$, and the degree of h in $M(E)$ is greater than or equal to the degree of a in $M(F)$. Of course, $H(a)$ may be empty. Let A denote the set of adversaries $\{a \in A : H(a) \neq \emptyset\}$ and let H denote the set of honest workers $\bigcup_{a \in \bar{A}} H(a)$. Now define a bipartite matching between \bar{A} and \bar{H} with an edge between $a \in \bar{A}$ and $h \in \bar{H}$ if and only if $h \in H(a)$. This bipartite graph can be decomposed into degenerate and growth sub-graphs by lemma 3. In the growth sub-graph, by Hall’s condition, we can find a perfect matching from adversaries to honest workers. Let (S_1, H_1) with $S_1 \subseteq \bar{A}$ and $H_1 = \text{Img}(S_1)$ be the degenerate component. The number of tasks that adversaries in S_1 affect is bounded above by $\sum_{h \in \text{Img}(S_1)} b_h$. Similarly, for $S_2 = \bar{A} \setminus S_1$, we can match each adversary to a distinct honest worker whose degree is greater than or equal to the degree of the adversary. We can now bound the number of affected tasks by the adversaries in S_2 by the sum of their degrees, which in turn is bounded above by the sum of the degrees of honest workers that the adversaries are matched to. Let H_2 denote the set of honest workers matched to adversaries in the perfect matching. Thus, we have bounded the number of affected tasks above by $\sum_{h \in H_1 \cup H_2} b_h$. It is easy to see that $|H_1 \cup H_2| \leq k$.

Therefore, $\sum_{h \in H_1 \cup H_2} b_h \leq \sum_{i=1}^{k} b_i$. Therefore, the number of affected tasks $|T|$ is at most $\sum_{i=1}^{k} b_i$ if the adversaries only disagree with the honest workers.

Note that since the above lemma is true for any choice of semi-matching M it is true in particular for the optimal semi-matching on B. Therefore, it gives us an upper bound on the number of affected tasks when the adversaries only disagree with the honest workers.

Now, consider the case when there is exactly 1 adversary that agrees with the honest workers and all other adversaries only disagree. Let M be the optimal semi-matching on the bipartite graph B resulting from such an adversary strategy and let a denote the adversary who agrees with the honest workers. Observe that we can apply the argument in lemma 6 above to get a bound on the number of affected tasks that the adversaries “win” against the honest workers. Let T_1 denote the set of these tasks. There are two possible scenarios: either we obtain a perfect matching between the k adversaries and some k honest workers (refer to the proof above). In this scenario, we have accounted for all the affected tasks in the original semi-matching M. In the other scenario, when the degenerate component is non-empty, we have a total of at most $k - 1$ honest workers on the right and we bound T_3 by the sum of the degrees of these honest workers. Note, however that we may be missing out on some of the affected tasks, namely those that the adversary a “loses” against other adversaries. The tasks that we might be missing out on correspond exactly to the tasks in E that the adversary a is mapped to in the semi-matching M. Specifically, let $M(E)$ denote the semi-matching M restricted to just the real tasks E. Then it follows that we can bound the number of affected tasks by $|T_1| + d_a(M(E))$ where $d_a(M(E))$ denotes the degree of a in $M(E)$.
Next observe that in both cases, we have bounded the number of affected tasks by the sum of the degrees of some k workers in the semi-matching M restricted to workers $H \cup \{a\}$ on the left and tasks E on the right, i.e. in the semi-matching $M(E)$. Lemma 5 tells us that $M(E)$ is in fact, the optimal semi-matching on the subgraph from workers $H \cup \{a\}$ to tasks E. Finally, lemma 4 implies that this sum is atmost $\sum_{i=1}^{k} d_i$ (by starting with M_H as a feasible semi-matching) and the bound follows.

Part 2. Adversaries can provide arbitrary labels

Now, consider the general case when any number of adversaries can agree with the honest workers. We further make the assumption that $|H| \geq 2 * |A|$, otherwise the upper bound below becomes $\sum_{i=1}^{|H|} d_i$, which is the set of all tasks T and is a trivial upper bound.

First recall that lemma 6 was applicable to any semi-matching and in fact, we can use the same argument even when the adversaries agree with the honest workers. Formally, let the set of affected tasks T for an arbitrary adversary labeling strategy, resulting in an optimal semi-matching M on the bipartite graph B be such that $T = T_H \cup T_A$ where T_H are the tasks that the adversaries “win” against the honest workers and T_A are the tasks that are affected when 2 adversaries are compared against each other in the final step of the PENALTY-BASED AGGREGATION Algorithm. We can apply the same argument as in lemma 6 to bound $|T_H|$ by the sum of the degrees of the top k honest workers in the optimal semi-matching M. Further, we can bound T_A by the number of tasks in E that were mapped to adversaries in the optimal semi-matching M. This, in turn is equal to the sum of the degrees of the adversaries in the semi-matching M restricted to just the real tasks E. Let $A_H \subseteq A$ denote the set of adversaries that are mapped to tasks in E in the optimal semi-matching M. Therefore, we can bound the number of affected tasks $|T|$ by the sum of the degrees of the top $j = k + |A_H|$ workers in the semi-matching M restricted to just the real tasks E. Now, we claim that this is upper bounded by the sum of the degrees of the top j honest workers in the optimal semi-matching M_H on the original honest worker sub-graph B_H. To see this, start with M_H as a feasible semi-matching from workers $H \cup A_H$ to tasks E. Lemma 4 tells us that the sum of the degrees of the top j workers in the optimal semi-matching is atmost the sum of the degrees of the top j honest workers in M_H. Further, lemma 5 tells us that the optimal semi-matching on the sub-graph from workers $H \cup A_H$ to tasks E is precisely the semi-matching M restricted to the real tasks E. This shows that we can bound the number of affected tasks by $\sum_{i=1}^{j} d_i$. Finally, note that $|A_H| \leq k \Rightarrow j \leq 2k$ and hence, we can bound the number of affected tasks by $\sum_{i=1}^{2k} d_i$.

Uniqueness of degree-sequence in optimal semi-matchings

In the arguments above, we have implicitly assumed some sort of uniqueness for the optimal semi-matching on any bipartite graph. Clearly its possible to have multiple optimal semi-matchings for a given bipartite graph. However, we prove below that the degree sequence of the vertices is unique across all optimal semi-matchings and hence our bounds still hold without ambiguity.

Lemma 7. Let M and M' be two optimal semi-matchings on a bipartite graph $B = (U, V, E)$ with $|U| = n$ and let $d_1 \geq d_2 \cdots \geq d_n$ and $d'_1 \geq d'_2 \geq \cdots d'_n$ be the degree sequence for the U-vertices in M and M' respectively. Then, $d_i = d'_i \ \forall \ 1 \leq i \leq n$, or in other words, any two optimal semi-matchings have the same degree sequence.

Proof. Let l be the smallest index such that $d_l \neq d'_l$, note that we must have $l < n$ since we have that $\sum_{j=1}^{n-l} d_j' = \sum_{j=1}^{n-l} d_j$. This means that we have $d_j = d_j' \ \forall \ j < l$. Without loss of generality, assume that $d_l > d'_l$. Now, $\exists q \in \mathbb{N}$ such that $d_{q} > d_{q}' + \sum_{j=l+1}^{n} d_{j}'$ and since $d_j = d_j' \ \forall \ j < l$, we have that $\sum_{j=1}^{l} d_j' \geq \sum_{j=1}^{l} d_j' > \sum_{j=1}^{n} d_j'$. But, this is a contradiction since an optimal semi-matching minimizes the L^p norm of the degree-vector for any $p \geq 1$ (Section 3.4 in [OPT]). Hence, we have that $d_i = d_i' \ \forall \ i$. \qed

References